ディスクアレイコントローラ

ディスクアレイコントローラ

1.概要

型名	製品名
N8503-44	ディスクアレイコントローラ
N8103-52	ディスクアレイコントローラ

HDD アレイの組み方ルール

・ 同一コントローラ配下には同容量*1/同回転数/同一規格(または同一規格で動作可能)の HDD を接続して下さい。

上記の条件のもと、以下の様な RAID 構成を組むことが出来ます。

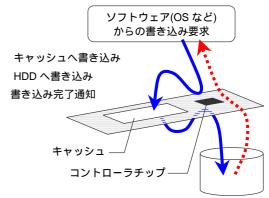
- ・同一のアレイコントローラ配下の HDD を使用して複数のパック / システムドライブを作成する ことが出来ます。
 - 異なる容量のパックを組むことが可能です。
 - 異なる種類の RAID レベルのシステムドライブを組むことが可能です。
 - CH をまたいだ HDD を使用してパックを組むことが可能です。
- ・サーバの運用を停めずに HDD 追加によるパック容量の拡張が可能。*2(Expand Capacity 機能)
- ・構成の等しいパックを最大4つまで、1パックとしてまとめる事が可能。(Spanning)
- *1:対象モデルに接続可能で、回転数が同じであれば同一パックで構成可能です。
- *2: Global Array Manager(N8503-44/N8103-52)のインストールが必要です。

2.機能仕様

		N8503-44	N8103-52	
拡張スロットバス形式		PCI (32bit)	PCI (32bit/33MHz) ユニバーサルコネクタ	
CPU		Intel i960RD/66MHz	Intel i960RS/100MHz	
SCSI 形式		Ultra2 SCSI Ultra SCSI(Wide)	Ultra160 SCSI	
同時使用可能	なチャネル数	1	1	
ー チャネル数	内部	1	1	
ノベイル数	外部	1	1	
Expand Capac	city 機能	可能	可能*1	
オンボードキャッシュ容量(MB)		4	16	
キャッシュ推奨設定		Write Through	Write Through	
バッテリーバックアップ		無	無	
キャッシュデータ保持時間		-	-	
最大同期転送	速度(MB/s)	80/40	160	
対応 RAID		0,1,5,0+1	0,1,5,0+1	
対応スパン		10,50,0+1+0	10,50,0+1+0	
HDD ホットプラグ		可能	可能	
スタンバイリビルド		可能	可能	
ホットスワップリビルド		可能	可能	

^{*1:} Windows2000 使用時にパック内のシステムドライブをダイナミックディスクに設定している場合は Expand Capacity 機能を使用できません。

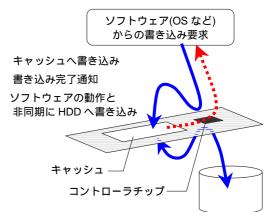
3.コンフィグレーションに必要な基本知識


キャッシュ

ディスクアレイコントローラ上に搭載されたメモリで、ディスクアレイコントローラがHDDへの読み書きを行う際のデータバッファとして利用したり、パリティ生成処理を行う際のワーク領域として利用します。

WriteThrough

OSなどのソフトウェアから書き込み要求がきた場合に、ディスクアレイコントローラ上のキャッシュとHDDの両方に書き込みを行う方式。


ソフトウェアは、HDDへの書き込み処理を終了するのを待ってから次の処理に移るため、一般的にWrite Backよりアクセス性能は劣ります。しかし、ソフトウェアからの書き込み要求が即時にHDDに反映されるため、電源瞬断などの不慮の事故が発生してもデータを損失する危険性が少ないという利点があります。

Write Back

OSなどのソフトウェアから書き込み要求がきた場合に、ディスクアレイコントローラ上のキャッシュへのみ書き込みを行い、HDDへの書き込みはキャッシュ上のデータを元にディスクアレイコントローラが非同期に行う方式。

キャッシュにデータが書き込まれた時点でソフトウェア側に完了通知が発行されるため、HDDへの書き込み処理が完了するのを待たずにソフトウェア側は次の処理を継続することができます。一般的にWtite Throughよりアクセス性能が向上しますが、電源瞬断などの不慮の事故が発生した際にキャッシュの内容がHDD上に反映されない場合があり、データを損失する危険性があります。

バッテリーバックアップ

ディスクアレイコントローラ上にバッテリーを搭載し、サーバに電源が供給されていない間 (「キャッシュデータ保持時間」の範囲で) キャッシュ上にデータを保持します。この機能により、Write Backで運用しているシステムにおいて、電源瞬断などの不慮の事故によるデータ損失を防ぐことができます。

【注意】バッテリ-バックアップに対応していないディスクアレイコントローラを利用する場合は、 UPSを使うなどして、電源瞬断などの不慮の事故からサーバを守る対策が必要になります。

【補足】 Write Through / Write Back のデフォルト設定について

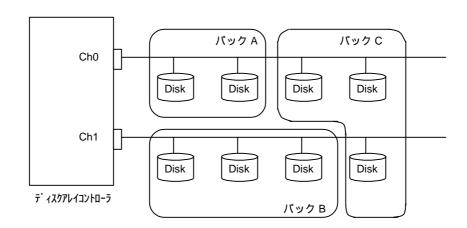
Express5800シリーズ用ディスクアレイコントローラでは、WriteThrough / Write Back の長所短所を考慮して、バッテリーバックアップの対応可否により各ディスクアレイコントローラのデフォルト値を次のように設定しています。

ディスクアレイ コントローラの型番	キャッシュ容量	バッテリー バックアップ	デフォルト設定値
N8503-44	4MB	無し	Write Through
N8103-52	16MB	無し	Write Through

「N8503-44/N8103-52」をデフォルト設定(Write Through)のまま利用すると、他のディスクアレイコントローラと比較して性能が劣っているよう感じる場合があります。その場合は、UPSを利用するなど電源瞬断への防止策をはかったうえでWrite Backで運用を検討してください。

パック

複数の HDD のグループで、システムドライブを設定するためのもの。


パックは、同一コントローラ上の異なるチャネルに接続されている HDD 同士を組み合わせて設定することも可能。

・N8503-44 の場合

1 枚のアレイコントローラに設定可能なパック数は接続した HDD 数に依存、システムドライブは 1 コントローラあたり最大 32 個。また 1 つのパックとして設定できる HDD は最大 8 台。

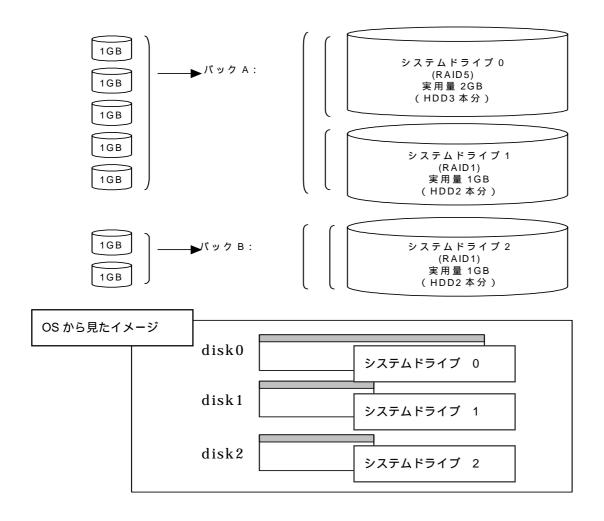
・N8103-52 の場合

1 枚のアレイコントローラに設定可能なパック数は接続した HDD 数に依存*1、システムドライブは1コントローラあたり最大 32 個。また1つのパックとして設定できる HDD は最大 15 台。

論理ドライブ

仮想的なドライブ。OS からは物理ドライブとして認識される。

論理ドライブを作成する際には、容量、RAID レベル、書き込み方式を指定する。

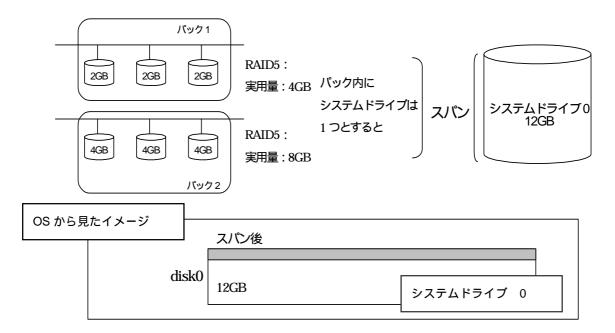

[補足]

論理ドライブは「システムドライブ (SystemDrive)」(N8503-44/N8103-52)と呼ばれる。論理ドライブはパック内に作成され、複数のパックにまたがってを設定することも可能 (「スパン」と呼ぶ)。

1 つのパック内に複数の論理ドライブを設定することも可能*¹ だが、設定時には冗長性を十分に 考慮する必要がある。また、インストール時には論理ドライブは 1 つのみにしておき、2 つ目以降 はインストール後に作成すること。

論理ドライブを設定する場合は使用する OS の制限を考慮して行って下さい。

1 つのディスクアレイコントローラに設定できる論理ドライブの数は機種によって異なり、 N8503-44/N8103-52 の場合、最大 32 個の論理ドライブを設定可能。



スパン

・対応アレイボード N8503-44/N8103-52

複数のパックにまたがってシステムドライブを設定すること。スパンは、同じ台数の HDD で構成されているパックが連続して配列されている場合に可能。

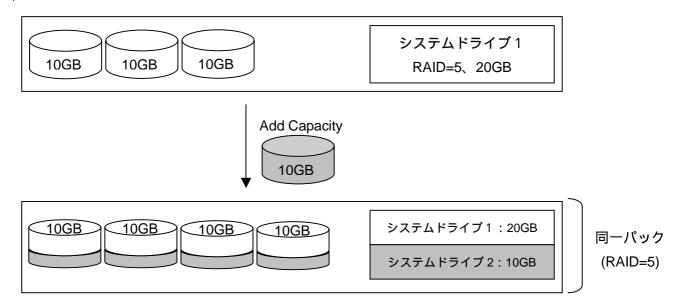
1 つのシステムドライブは最大 4 つのパックにまたがってスパンすることができる。

HDD ホットプラグ(ホットスワップ)

HDD ホットプラグとは、冗長性のある RAID レベルにてシステムを構築している場合、システム稼働中でも電源を落とすことなく、障害を起こした HDD を交換することができる機能。

オートリビルド

オートリビルドとは、冗長性のある RAID レベルにてシステムを構築している場合、障害を起こした HDD を交換後に自動的にシステムの再構築(リビルド)を行う機能。スタンバイディスクがある場合、スタンバイディスクを使って自動的にリビルドを行う。スタンバイディクがない場合、障害を起こした HDD の交換後に自動的にリビルドを行う。


スタンバイディスク(ホットスペア)

冗長性のある RAID レベルにてシステムを構築している場合、予備ディスクを予めシステムに組み 込んでおくことで、HDD の障害発生時、自動的に予備ディスクを使用してシステムの再構築を行 う。この予備ディスクをスタンバイディスクという。 Expand Capacity (オンラインエクスパンション、Add Capacity、Expantion)

- -容量の拡大-
- ・N8503-44/N8103-52 の場合

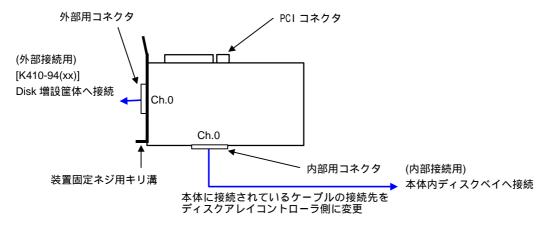
既に設定済みのパック容量を拡大するために、最終パックに HDD を追加して 1 つのパックにまとめる機能。本機能はパック容量を拡大するだけで、システムドライブ(System Drive)容量を拡大する機能ではないため、パック容量の拡大に伴ってできた空き領域に、新規にシステムドライブを作成する必要がある。

(例)

クリティカルブート機能

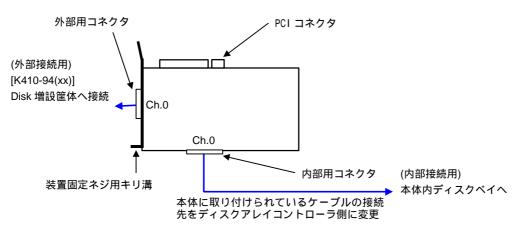
サーバの立ち上げ時に HDD が Dead になった場合、Dead になった HDD を自動的に切り離して縮退させます。(注)

(注) N8503-44 においては、ファームウェアのバージョンにより、本機能(クリティカルモード)をサポートしていない場合はあります。その際は、保守サービス会社にご相談ください。


テンポラリーオフライン機能

システムドライブを構成している複数のハードディスクに異常が発生した場合、2 台目以降のハードディスクの異常が偶発的なものであれば、再起動により基本装置を自動的に復旧させるテンポラリーオフライン機能をサポートします。(N8103-52 のみ)

4.接続図


以下の接続図は、ディスクアレイコントローラの裏面(バッテリやメモリ等が実装されていない面)から見た接続図

N8503-44 ディスクアレイコントローラの場合

^{*}内部用 ch0 と外部用 ch0 は排他利用

N8103-52 ディスクアレイコントローラの場合

^{*}内部用 ch0 と外部用 ch0 は排他利用

5.注意事項

5.1.一般事項

(1)共通

- ・同一コントローラ配下には同容量*1/同回転数/同一規格(または同一規格で動作可能)*2の HDD を接続して下さい。
- ・ディスクアレイコントローラ配下に Disk 増設筐体をデイジーチェーン接続することはできない。 (SCSI1 チャネル当りに接続可能な Disk 増設筐体は 1 台のみ。)
- ・K410-94(xx)を使用して Ultra SCSI で接続する場合、最大ケーブル長は 3m、Ultra2/Ultra160 SCSI の場合の最大ケーブル長は 6m。
- ・Windows2000 使用時にパック内のシステムドライブをダイナミックディスクに設定している場合は Expand Capacity 機能を使用できません。
- ・N8103-52 に接続可能な HDD は Ultra160 対応の HDD のみ。
- ・電源制御機能による休止状態やスタンバイ状態への以降をサポートしていません。システムや OS が休止状態やスタンバイ状態への移行をサポートした場合でも、実施しないで下さい。
- ・PCI Hot Plug 機能をサポートしていません。PCI コントローラをシステムに接続する場合やシステムから取り除く場合はシステムの電源を切断した状態で行って下さい。

(2)Mylex 系

- ・DACCF(Mylex DAC MS-DOSユーティリティ)はN8103-52では使用できません。POSTからALT+RでRAID EzAssist Configuration Utility を起動してください。
- ・OS を WindowsNT4.0 から Windows2000 ヘアップグレードする際は、一旦 Global Array Manager をアンインストールしてから実施してください。
- *1:対象モデルに接続可能で、回転数が同じであれば同一パックで構成可能です。
- *2:コントローラと HDD 組み合わせ動作表

サポート HDD コントローラ		Ultra160 SCSI/ Ultra2 SCSI/ Ultra SCSI 共用ディスク	Ultra2 SCSI/ Ultra SCSI 共用ディスク	Ultra SCSI	
Ultra160 SCSI 対応コントローラ	N8103-52	Ultra160 SCSI で動作	接続不可	接続不可	
Ultra2 SCSI/ Ultra SCSI 対応コントローラ	N8503-44	Ultra2 SCSI で動作	Ultra2 SCSI で動作	Ultra SCSI で動作	

^{*} N8103-52 は Ultra160 SCSI のみサポート (Ultra2 SCSI/Ultra SCSI はサポート外)

5.2.オートリビルド機能注意事項

(1)オートリビルドが動作しない条件

通常、ディスクアレイコントローラは、ディスクに DEAD 等の障害が発生した場合、故障したディスクを取り外し、その後新しいディスクを挿入することにより自動でリビルドが動作いたしますが、以下の場合、オートリビルドが動作しない可能性がありますので、ご注意願います。

- 1.故障したディスクを取り外してから、90秒以内に新しいディスクを挿入した場合
- 2.リビルドが開始されるまで、数分かかる場合があります。異常ではありません。
- 3.新しく入れたディスクの容量が、元のディスクの容量よりも小さい場合
- 4.接触不良の場合
- 5.シャットダウン処理中の場合
- 6.電源 OFF 中に故障したディスクを交換した場合
- 7.他のシステムドライブでリビルド/Consistency Check/Expand ADD Capacity のいずれかを実行中の場合
- 8.交換したディスク / SCSI-BP / DAC のいずれかが故障している場合

(2) 対策

オートリビルド動作がしない場合、以下の順で対策を実施して下さい。

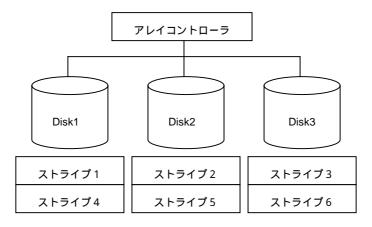
- 1.新しいディスクの型番が正しいものかどうか再確認して下さい。
- 2.他のシステムドライブ(パック)でリビルド、Consistency Check、Expand ADD Capacity が動いていないか GAM 等で確認して下さい。もし、動いている場合は終了するまで待ってから、再度リビルドを実行して下さい。
- 3.ディスクを再度抜いて90秒以上待った後、新しいディスクを再挿入し数分間待って下さい。
- 4.GAM 等からマニュアルリビルド可能な時は、実行して下さい。
- 5.一旦、電源 OFF し各コントローラ対応のオフラインユーティリティ(*1)からマニュアルリビルドを実行して下さい。
- 6.DISK を交換して再度、リビルドを実行して下さい。
- 9.DAC、SCSI-BPを交換して、再度、リビルドを実行して下さい。
- *1: N8103-52 は「RAID EzAssist Configuration Utility」を使用する。 上記以外のコントローラは「DACCF」を使用する。

6.ディスクアレイについて

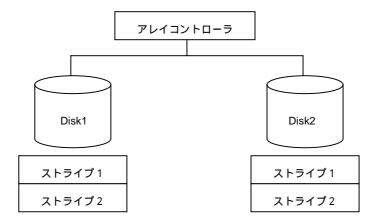
RAID は「Redundant Arrays of Inexpensive [Independent] Disks」の頭文字をとったもので、複数のハードディスクを論理的に結合させて1つのディスクドライブとして認識させる方法である。

この方法により、安価で小容量のハードディスクを複数使用して高価な大容量ハードディスクと同等のディスクドライブを構築することができ、さらにドライブを強化(信頼性の向上、オートリビルドのサポート)・拡張することが可能。

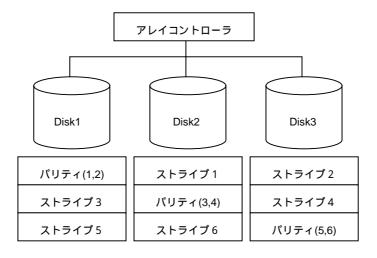
RAID には、いくつかのレベルがあり、その中で Express5800 は RAID0/RAID1/RAID5/RAID0+1 などをサポートしている。

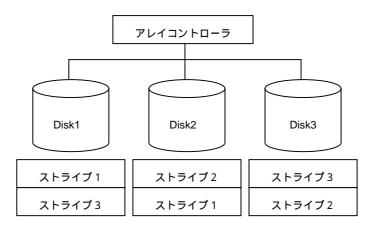

全ての RAID レベルは「複数台のハードディスクを 1 つのディスクドライブとして認識させる」という点で共通であるが、それぞれの RAID レベルで性能・コスト・使用条件が異なるので、ニーズにあった構成を選択すること。

それぞれの RAID レベルの特徴と選択の方法例

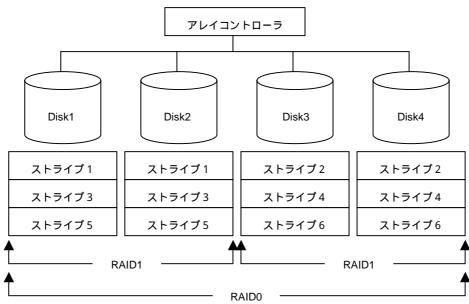

RAID レベル	定義	冗長性	特徴	使用に適した AP	必要な HDD 台数
RAID0	ストライピング	なし	・リード / ライトとも最も 高速	クリティカルでない データに対して高い 性能を必要とする AP	2 台 以上
RAID1	ミラーリング	有り	・ディスクの二重化 ・リード性能は HDD 単体 の場合と同等だがライト 性能はやや劣る ・同じデータを二重に書き 込むため、多くの HDD 容量が必要	システムドライブ、重 要なファイルなど	2 台
RAID5	パリティ付き ストライピング	有り	・パリティデータ ・転送データサイズ大 ・RAID0,0+1 と比較する とリードは同等だがライ ト性能はやや劣る ・1台分の HDD 容量がパ リティ領域として利用さ れ、コストパフォーマン スが高い	重要なデータを大量 に扱い、リード性能が 要求される AP	3台以上
RAID0+1 (Mylex 系 RAID6)	分散ミラーリン グ	有り	・ストライプ単位でデータ 領域とミラー領域を2台 のディスクに分散 ・リード/ライトとも RAID1よりもやや高速 ・同じデータを二重に書き 込むため、多くの HDD 容量が必要	システムドライブ、重 要なファイルなど	Mylex 系 3 台 以上

RAID イメージ


RAID0

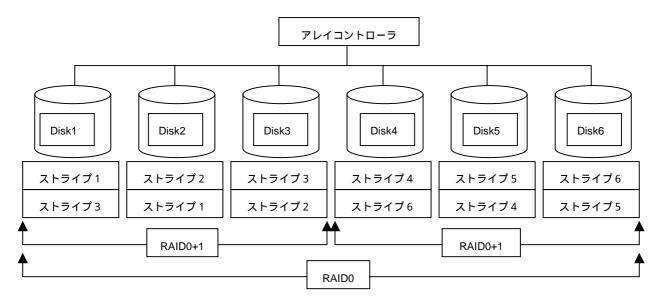

RAID1

RAID5



RAID0+1 (RAID6)

Spanning イメージ


RAID10

RAID50 アレイコントローラ Disk1 Disk2 Disk3 Disk4 Disk5 Disk6 パリティ(1,2) ストライプ 1 ストライプ2 パリティ(3,4) ストライプ3 ストライプ4 ストライプ7 パリティ(7,8) ストライプ5 (5,6)ストライプ6 ストライプ8 ストライプ 10 ストライプ 11 ストライプ 12 ストライプ9 パリティ(9,10) パリティ(11,12) RAID5 -RAID5 -

RAID0

RAID0+1+0 (RAID60)

